(*) 選擇第一個JOIN的表為A
(**) 確定A表的訪問方式
因為A表是第一個表,所以無法使用索引`IND_DID`(B.DepartmentID = A.DepartmentID)
那么只能使用索引`IND_L_D`(A.LastName = 'zhou')
使用IND_L_D索引的成本計算,總成本為25.2;參考前面計算;
(**) 這里訪問A表的成本已經是25.2,比之前的最優成本2.4要大,忽略該順序
所以,這次窮舉搜索到此結束
把上面的過程簡化如下:
(*) 選擇第一個JOIN的表為B
(**) 確定B表的訪問方式
(**) 從剩余的表中窮舉選出第二個JOIN的表,這里剩余的表為:A
(**) 將A表加入JOIN,并確定其訪問方式
(***) IND_L_D A.LastName = 'zhou'
(***) IND_DID B.DepartmentID = A.DepartmentID
(***) IND_L_D成本為25.2;IND_DID成本為1.2,所以選擇后者為當前表的訪問方式
(**) 確定A使用索引IND_DID,訪問方式為ref
(**) JOIN順序B|A,總成本為:1.2+1.2 = 2.4
(*) 選擇第一個JOIN的表為A
(**) 確定A表的訪問方式
(**) 這里訪問A表的成本已經是25.2,比之前的最優成本2.4要大,忽略該順序
至此,MySQL優化器就確定了所有表的最佳JOIN順序和訪問方式。
3. 測試環境
MySQL: 5.1.48-debug-log innodb plugin 1.0.9
CREATE TABLE `department` (
`DepartmentID` int(11) DEFAULT NULL,
`DepartmentName` varchar(20) DEFAULT NULL,
KEY `IND_D` (`DepartmentID`),
KEY `IND_DN` (`DepartmentName`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;
CREATE TABLE `employee` (
`LastName` varchar(20) DEFAULT NULL,
`DepartmentID` int(11) DEFAULT NULL,
KEY `IND_L_D` (`LastName`),
KEY `IND_DID` (`DepartmentID`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;
for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done
for i in `seq 1 50` ; do mysql -vvv -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 200` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),27760)'; done
for i in `seq 1 1` ; do mysql -vvv -uroot test -e 'insert into department values (27760,"TBX")'; done
show index from employee;
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| employee | 1 | IND_L_D | 1 | LastName | A | 1349 | NULL | NULL | YES | BTREE | |
| employee | 1 | IND_DID | 1 | DepartmentID | A | 1349 | NULL | NULL | YES | BTREE | |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
show index from department;
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| department | 1 | IND_D | 1 | DepartmentID | A | 1001 | NULL | NULL | YES | BTREE | |
| department | 1 | IND_DN | 1 | DepartmentName | A | 1001 | NULL | NULL | YES | BTREE | |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
4. 構造一個Bad case
因為關聯條件中MySQL使用索引統計信息做成本預估,所以數據分布不均勻的時候,就容易做出錯誤的判斷。簡單的我們構造下面的案例:
表和索引結構不變,按照下面的方式構造數據:
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done
for i in `seq 1 1` ; do mysql -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 10` ; do mysql -uroot test -e 'insert into department values (27760,"TBX")'; done
原文轉自:http://www.orczhou.com/index.php/2013/04/how-mysql-choose-index-in-a-join/