MapReduce實例淺析(4)

發表于:2015-07-10來源:uml.org.cn作者:open經驗庫點擊數: 標簽:數據庫
14/12/17 23:04:20 INFO mapred.MapTask: record buffer = 262144/327680 14/12/17 23:04:20 INFO mapred.MapTask: Starting flush of map output 14/12/17 23:04:20 INFO mapred.MapTask: Finished spill 0 14/12/1

  14/12/17 23:04:20 INFO mapred.MapTask: record buffer = 262144/327680

  14/12/17 23:04:20 INFO mapred.MapTask: Starting flush of map output

  14/12/17 23:04:20 INFO mapred.MapTask: Finished spill 0

  14/12/17 23:04:20 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting

  14/12/17 23:04:20 INFO mapred.LocalJobRunner:

  14/12/17 23:04:20 INFO mapred.TaskRunner: Task ‘attempt_local_0001_m_000001_0′ done.

  14/12/17 23:04:20 INFO mapred.LocalJobRunner:

  14/12/17 23:04:20 INFO mapred.Merger: Merging 2 sorted segments

  14/12/17 23:04:20 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 90 bytes

  14/12/17 23:04:20 INFO mapred.LocalJobRunner:

  14/12/17 23:04:20 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting

  14/12/17 23:04:20 INFO mapred.LocalJobRunner:

  14/12/17 23:04:20 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now

  14/12/17 23:04:20 INFO output.FileOutputCommitter: Saved output of task ‘attempt_local_0001_r_000000_0′ to out

  14/12/17 23:04:20 INFO mapred.LocalJobRunner: reduce > reduce

  14/12/17 23:04:20 INFO mapred.TaskRunner: Task ‘attempt_local_0001_r_000000_0′ done.

  14/12/17 23:04:20 INFO mapred.JobClient: map 100% reduce 100%

  14/12/17 23:04:20 INFO mapred.JobClient: Job complete: job_local_0001

  14/12/17 23:04:20 INFO mapred.JobClient: Counters: 14

  14/12/17 23:04:20 INFO mapred.JobClient: FileSystemCounters

  14/12/17 23:04:20 INFO mapred.JobClient: FILE_BYTES_READ=46040

  14/12/17 23:04:20 INFO mapred.JobClient: HDFS_BYTES_READ=51471

  14/12/17 23:04:20 INFO mapred.JobClient: FILE_BYTES_WRITTEN=52808

  14/12/17 23:04:20 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=98132

  14/12/17 23:04:20 INFO mapred.JobClient: Map-Reduce Framework

  14/12/17 23:04:20 INFO mapred.JobClient: Reduce input groups=3

  14/12/17 23:04:20 INFO mapred.JobClient: Combine output records=0

  14/12/17 23:04:20 INFO mapred.JobClient: Map input records=4

  14/12/17 23:04:20 INFO mapred.JobClient: Reduce shuffle bytes=0

  14/12/17 23:04:20 INFO mapred.JobClient: Reduce output records=4

  14/12/17 23:04:20 INFO mapred.JobClient: Spilled Records=8

  14/12/17 23:04:20 INFO mapred.JobClient: Map output bytes=78

  14/12/17 23:04:20 INFO mapred.JobClient: Combine input records=0

  14/12/17 23:04:20 INFO mapred.JobClient: Map output records=4

  14/12/17 23:04:20 INFO mapred.JobClient: Reduce input records=4

  可見在默認情況下,MapReduce原封不動地將輸入寫到輸出

  下面介紹MapReduce的部分參數及其默認設置:

  (1)InputFormat類

  該類的作用是將輸入的數據分割成一個個的split,并將split進一步拆分成對作為map函數的輸入

  (2)Mapper類

  實現map函數,根據輸入的對生產中間結果

  (3)Combiner

  實現combine函數,合并中間結果中具有相同key值的鍵值對。

  (4)Partitioner類

  實現getPartition函數,用于在Shuffle過程按照key值將中間數據分成R份,每一份由一個Reduce負責

  (5)Reducer類

  實現reduce函數,將中間結果合并,得到最終的結果

  (6)OutputFormat類

  該類負責輸出最終的結果

  上面的代碼可以改寫為:

public class LazyMapReduce {
    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if(otherArgs.length != 2) {
            System.err.println("Usage:wordcount");
            System.exit(2);
        }
        Job job = new Job(conf, "LazyMapReduce");
        job.setInputFormatClass(TextInputFormat.class);
        job.setMapperClass(Mapper.class);
         
        job.setMapOutputKeyClass(LongWritable.class);
        job.setMapOutputValueClass(Text.class);
        job.setPartitionerClass(HashPartitioner.class);
        job.setReducerClass(Reducer.class);
         
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(Text.class);
        job.setOutputFormatClass(FileOutputFormat.class);
         
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true)? 0:1);
    }
}

原文轉自:http://www.uml.org.cn/sjjm/201501201.asp

国产97人人超碰caoprom_尤物国产在线一区手机播放_精品国产一区二区三_色天使久久综合给合久久97